BAB III METODE PENELITIAN

3.1. Waktu dan Tempat Penelitian

Penelitian ini dilaksanakan di Institut Teknologi Sumatera yang dimulai pada pertengahan bulan September 2020 sampai dengan akhir bulan Agustus 2021.

	Γ				ć		2	020												_													-			20	21				_														-	-
Agenda		temb	er	()kto	ber		N	ovei	nbei	r	D	leser	nbe	r		Jar	war	i		Fe	bru	ari			Ma	ret			A	oril			M	lei			Ju	ni			Ji	uli			Ag	istu		S	lepti	emb	er		0k	tobe	r
-	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Studi Pustaka																																																								
Penulisan Draft																																																								
Persiapan Data																																																								
Pengolahan Data Sementara																																																								
Analisis Hasil Sementara																																																								
Seminar Proposal																																																								
Revisi Hasil Sementara																																																								
Ujian Komprehensif																																																								
Sidang Akhir																																																								
Revisi Akhir																																																								
Yudisium																																																								
Wisuda																																														Γ										

Tabel 3. 1	Timeline	Tugas	Akhir
------------	----------	-------	-------

3.2. Diagram Alir

Gambar 3. 1 Diagram Alir Penelitian

3.3. Alat dan Bahan

Perangkat lunak yang digunakan dalam penelitian ini adalah *Hampson-Russel Software* (HRS) CE8 dan *Petrel* 2009.

3.3.1 Data Penelitian

Data penunjang yang digunakan dalam penelitian ini antara lain:

1. Data Seismik

Data seismik yang berupa 3D *Pre-Stack Time Migration* (PSTM). Data 3D ini memiliki jumlah *inline* 601 (1000 sampai 1600) dengan jarak antar spasi 12.5 m pada arah utara-selatan dengan sudut kemiringan 62.39° dari utara, jumlah *xline* 482 (1000 sampai 1481) dengan jarak antar spasi 25.01 pada arah timurbarat dengan sudut kemiringan 27.61° dari utara dan *time range* 0 ms sampai 6000 ms.

Gambar 3. 2 Geometri Data Seismik

2. Data Sumur

Lapangan ini terdiri dari beberapa sumur namun yang tersedia untuk data publik hanya 2 sumur sehingga penelitian ini hanya menggunakan dua sumur vertikal. Sumur yang dipakai dalam penelitian ini adalah L-30 dan B-41. Untuk sumur L-30 memiliki kedalaman 4237.5 meter yang merupakan jenis sumur yang *oil and gas well* sehingga mengindikasikan adanya hidrokarbon sedangkan sumur B-41 memiliki kedalaman 3414.4 meter yang jenis sumurnya *dry hole*. Sumur B-41 biasanya digunakan untuk dikorelasikan dengan sumur L-30 sehingga walaupun jenisnya *dry hole* sumur tersebut tetap digunakan.

Informasi yang terdapat pada kedua data sumur tersebut antara lain Depth, log density, log sonic, log gamma ray, log Neutron, P-Wave velocity, SP, resistivity, porosity neutron dan caliper. Log densitas dan log sonic digunakan untuk melakukan pengikatan data sumur dengan data seismik. Data log lainnya digunakan untuk mendukung interpretasi dan pemodelan.

Log	Sumur L-30	Sumur B-41
Depth		\checkmark
CALD		\checkmark
CALS		\checkmark
DRHO		\checkmark
DT		\checkmark
GRD		\checkmark
GRS		\checkmark
ILD		\checkmark
ILM		\checkmark
LL8		\checkmark
NPHISS		\checkmark
NPHILS		-
RHOB		
SP		

Tabel 3. 2 Ketersediaan data sumur pada lapangan Penobscot

Untuk melihat keberadaan lokasi sumur, dapat dilihat pada **gambar 3.3** dibawah ini. Dimana sumur 1-30 berada pada koordinat 44°09'43.558"N/60°04'00"W dan Sumur B-41 berada pada koordinat 44°10'02"N/60°06'32"W.

Gambar 3. 3 Base Map of Survey Area

3. Data Checkshot

Data *checkshot* digunakan untuk menghubungkan waktu dengan kedalaman yang nantinya akan digunakan untuk mengikat data sumur terhadap data seismik pada proses *well seismic tie*. Data ini diperoleh dengan cara memasang *geophone* didalam sumur dan sumber berada dipermukaan dekat dengan sumur sehingga nantinya akan diperoleh informasi mengenai kedalaman dan waktu tempuh (TWT) pada sumur tersebut.

4. Data Marker

Data marker adalah data yang menunjukkan zona lapisan yang ada pada daerah penelitian. Data ini digunakan untuk membantu memprediksi lapisan yang mengandung batupasir. Data ini juga digunakan untuk melakukan *picking horizon* dan *picking fault* pada zona yang akan dijadikan target yang akan dikorelasikan dengan data sumur yang tersedia.

	Kedalaman						
Marker	(me	eter)					
	L-30	B-41					
quaternary	167	-					
WyanDot_FM	867.16	858.62					
DAWSON_CANYON_FM	984.5	985.11					
LOGAN_CANYON_FM	1136.9	1157.02					
U.MISSISAUGA	2251.25	2246.99					
Base_O_Marker	2469.21	2472.56					
Pay_sand_1-rft	2478	2478					
pay_sand_2	2499	2499					
pay_sand_3	2543	2543					
pay_sand_4	2637	2637					
sand_5	2699	2699					
sand_6	2795	2795					
sand_7	2835	2835					
L.MISSISAUGA	3190.65	3190.65					
ABENAKI_FM	3404.31	-					
MID_BACCARO	3485.08	-					
L.BACCARO	3964.53	-					
Shale_tongue	4112.8	-					

Tabel 3. 3 Data Marker Geologi pada lapangan Penobscot

3.4. Pengolahan Data

3.4.1. Pengkondisian Data Seismik dan Data Sumur

3.4.1.1. *Preconditioning* Data

Preconditioning data seismik dilakukan untuk menghilangkan semua kemungkinan *noise* yang masih tersisa sehingga menyebabkan data yang digunakan masih kurang baik. Sehingga diharapkan data sudah tidak terdapat *noise* sebelum proses *stacking* dilakukan. Hal yang akan dilakukan pada tahap *preconditioning* yaitu *bandpass filter, super gather* dan *trim static*.

Bandpass filter dilakukan untuk menghilangkan sinyal frekuensi yang berada diluar frekuensi dominan dan lebih memperlihatkan frekuensi dominan dari data seismik. Selanjutnya, data seismik yang telah dilakukan proses *bandpass filter*, kemudian dilakukan pembuatan *super gather* yang mana digunakan untuk meningkatkan *signal to noise ratio* (S/N) dengan menjumlahkan beberapa buah CDP *gather* yang berdekatan. Lalu, dilakukan proses *trim static* yang bertujuan untuk memperbaiki *trace* seismik.

(c)

Gambar 3. 4 Proses Preconditioning data seismik: (a) bandpass filter, (b) Super gather dan (c) trim static.

3.4.1.2. Angle Gather

Tahapan ini dilakukan untuk mengubah data seismik yang sebelumnya memiliki domain jarak menjadi data seismik yang memiliki domain sudut datang gelombang seismik terhadap reflektornya. Jangkauan sudut seismik yang diberikan berkisar antara 0°-39°. Jangkauan sudut tersebut dilakukan untuk melihat jangkauan sudut seismik sebenarnya pada data seismik yang digunakan memiliki sudut minimum dan maksimum berapa. Berdasarkan jangkauan sudut yang telah diberikan sebelumnya, jangkauan sudut optimum yang terlihat pada data seismik tersebut berkisar antara 0°-35° yang dapat dilihat pada gambar 3.5 dibawah ini. Setelah didapatkan jangkauan sudut optimum tersebut, maka *angle gather* dapat digunakan untuk analisis AVO sebagai inputan dalam mengekstraksi atribut AVO *intercept* (A) dan *gradient* (B) serta digunakan untuk *stacking* data seismik.

Xline	1155	1156	1	157	1	158	1159		1160	1161	116	2	1163	1164	1165	1166	1167	1168
Angle	32 41	0 9 18 2	7 36	0 9 18 2	7 36	0 9 18 27	7 41 0	9 18 27 36	0 9 18 27	36 0 9	18 27 41 0	9 18 27 36	0 9 18 27 36	0 9 18 27	41 0 9 18 27 3	6 0 9 18 27 3	5 0 9 18 27	41 0 9 18
Well													PENO	BSCOT L-30				
1800		11111		111111		1111111	***	*****		110 114		WWWWWWW	inini	i Division	in human	i human	i Kan	a ka
	.,,,,,	-1144	,,,,,	-14444	Щ.	44444	111-14	(((1)))		14.44	(11111	(((())))	U.MISSISAU	•• •• •• •• •• •• ••	11	1	9	141-44444
	λЩ.,	44444	444	-4444-	<u>, </u>	44444	444-45	444444		44	6444644	4444 <u>4</u> 444		<u>}</u>		4	4	444-44444
	717)-	как	1173-	RAN	1179-	1411111	44) - 14	4444444		11)-111	******	4444444444	-44444444	1-14460	11-14444444	.114.14(444	1.111444	10.44444
	444.	-77744	GRG-	-122444	ЦQ.	44444	<u> 144-14</u>	44444		1444	(444)4((4(,122)))(4-14((477)	€	4	94(.(22))))
1900))) 	1)))))	,,,,		<u>}})//</u>		W//)	,,,,,,,,,		₩ III	****	111999191		1 1111111	21 III 11)	1 1111111	201 111120
	444-	444444	44.	-455445	(. (. . .	-444444	644-45	444444		<u>11</u>	(<u>(</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	55555614	-4555544	4 	44-4444444	44444444	4	144444
	· • • • • •		****	- 1 f f f f f f f f	***	144444	***	66666768		W -44	444444	11111111		1- 7 -44444	A	1-++++++++++++++++++++++++++++++++++++	d1444444	381-144444
	5696	-44446	44	-44444		-1666666	(((){)	5556666		44 44-	~~~~	*******		f & {{<}{}}	4	1	1	77
	1111	++1111	HA	-+++++++++++	卅廿	- #####	++++++	959994H	•••••••••••••••	******	****	,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,		}~ \$} }}}	3) -9 349979	n-1990324) 	x})-+###}
2000	WU	KKK	\mathcal{U}		\mathcal{U}	*****	(27 K	\leq	<u> K≪{{{</u>	7(KK	(((((Kaa a	Pay send 1.	'' '≚(()	11 КСССИ	+ KK((1))	1 6600	71 КССС
	1))))	-	5 D))		1)))))))) (i)	14 4444))) -)	- 144444	Distant PP1	pay_sand	1000			d	A
			444		(44)	1999	****	<<< !</td <td></td> <td>({···· (@</td> <td>22444</td> <td>(KCT(4)</td> <td></td> <td>- - CCCC</td> <td>11-10000000</td> <td>11175231</td> <td></td> <td>7322) H H</td>		({···· (@	22444	(KCT(4)		- - CCCC	11-10000000	11175231		7322) H H
	· ////	18111	++,,,,	10000	サル	10000	777 12	ccum		111-120	227997	teettiit			71	1	4	11-10021
	****	+72778	(~~~	$\pm t t t t$	<u> </u>	++++++++++++++++++++++++++++++++++++	((:	$\mathcal{H}\mathcal{H}\mathcal{H}$		$H \to t$	1474444-4	<i>}}}}}</i>	-12757444	<u>}₽}}}</u>	(+-+}}}}((((1-123246666	<u>+</u>	(++}}}&
2100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,	1,,,,,,,,	,,,,,	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	pay_sand	3 2 9977771	· · · · · · · · · · · · · · · · · · ·	1 20000001	1 200000	<u>' </u>
	51000	11222	33CC	22221	::::::::::::::::::::::::::::::::::::::	1122221	((((\$\$11222		11111	224000-	765112271	177777777	<u>, stitt</u>	11.1111111-11		577277777	117-10000
	THE .	*****			MN .	11)))))))))))))))))))))))))))))))))))))		1044315		1) - H	M1999	INTERN		r fidmin	9° (70060)))*	P DDD11)) - D))
	177	12////0	77	11111	77 E	111/17	7112	111027	··· <i>vi//(</i> (7 12	21000	1111111	1/// (sand	<u>s 1</u> 77777777		1 11/1/10	1 10176	(1 1)///
2200	222.1	122222	22.1.	DDDD	ΰST:	DDDDD)))))))))))))))))))))))))))))))))))))))))))		$\gamma \rightarrow \infty$	22222111))))))))	()))) sand	<u>6 1000000000000000000000000000000000000</u>	11 DDDDD11	1 000001	(0,0)	11 2000
2200	21	12000	77	(1)	227	(()))	2112	A bank da	- Salada	N 15	hhat bh	14 164 44	Abblind	7	1 2222001	a a a a a a a a a a a a a a a a a a a	()))))	1
	TDI.	27/11	101°	111.	IV.	12110	2112	22/11/1	2777	11 27	27 117 111	7777CUIII	2711(11)	1 77785	1 277711)) ////
	DVE:	(((((221	(D))))	UDE:	())))))	2011:D	2001/211		7)[]))	991171 H	mmu	-D22222144	10000	(1.12))))))((1.1222214((1.1222210	(CE 1222))I
	MU.	DUG	NU.	122227	DZU.	122227.1	XU.D	m_{2}		11 D)	2011/1	DDM12121	Dm1///2	1.00MD	21.100MDD	1.02705	1.192712	n_{111}
2300	111	MAG	WI.	11111	SIXL.	KIIII	X I (MADA	- KUTU	10 11	11111	mm	100000	\square (10))	a = a	(22)	$\square (70)$	$\mathbf{M} = \mathcal{U} \mathcal{D}$
	201.	22.046	201.	\mathcal{M}	20.	MUU.	7.1	lauz.		024	[[[]]]	20.002.21		1 <mark>.</mark> 2433.44	7	1	1120306	71117U.V.
	XC		64 I.		MS.L.		&.L.D	*** *		ις.L.D)))), ())))))))))/ 20 00)
	541.	1334444	X.I.I.:	.153666	X .I.I.	1999227	(III III III III III III III III III I	Marka Ch				1.666666	. de e e e e e e e e e e e e e e e e e e	l. <mark>Dissis</mark> i			1))??????	51.1D) 5 55
	./)	455477	20	4440	/ 	4444	9	\${{ [] }		<u>, 5</u> 5.	(((,),),)	SSC(47711		<i></i>)//////)4//////	1	74444)////
2400	441	1002	(111111		14471	$\left\{ \mid \mid \right\}$	5777 (H	- (\$(7)		(2)\	SSR5911	-122 337	1 ((1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1 2000	- >> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1 1970	1 220
	Q.	1519994	(++-)	-1222))}}	ų(499)X	44)	7799A(H		() ↓	J))){{ - - -	1110)\{(11		444749)33	44-4((()))))	4-4(773)34	1-166693	HH-1474()
	11	+>>++	<u>n</u>		H -1	4994944	944-4 3) }}}() +		44-444	SS644-1	4 555 661		↓ £ }}}{	++-++++++++++++++++++++++++++++++++++++		+	{+++ })# {}
		44444	.)	-44444	1.).4.1.	44444	HH-H(4441.).[])- - {{}_{i}}	8661) H-H-H	((((()))))	K&&AH	↓- } {{{}}}	41-K&&A11	HK&&&H	1-K(((())	44-44(44)

Gambar 3. 5 Angle gather.

3.4.1.3. CDP Stack

Data seismik CDP gather dilakukan proses *stacking* guna untuk meningkatkan *signal to noise ratio* (S/N). Setelah dilakukannya proses CDP *stack*, maka data yang sudah dilakukan *stack* tersebut akan digunakan untuk interpretasi seismik horizon dan *fault*.

Gambar 3. 6 CDP stacking

3.4.1.4. Analisa Zona Target

Target penelitian pada lapangan penobscot berada pada formasi Missisauga dikarenakan berdasarkan informasi yang didapat dari stratigrafi cekungan scotia, pada formasi Missisauga lebih didominasi oleh litologi batupasir dan *shale*. Berdasarkan informasi tersebut, untuk memisahkan kedua litologi itu dengan baik, maka digunakan Log *gamma ray* dengan nilai *cutoff* 60 GAPI. Dengan pemisahan menggunakan Log *gamma ray*, ketika nilai yang dihasilkan lebih kecil daripada *cutoff* 60 GAPI maka dapat dikatakan memiliki litologi batupasir dan ketika nilai yang dihasilkan lebih besar daripada nilai *cutoff* 60 GAPI maka memiliki litologi *shale*. Untuk lebih jelasnya dapat dilihat pada gambar 3.7 yang menampilkan litologi batupasir dengan warna kuning, sedangkan shale ditandai dengan warna hijau.

Selanjutnya, ketika akan melakukan analisa untuk fluida reservoar dapat menggunakan log *neutron porosity* dan log *density*. Pada saat melakukan analisis log *neutron porosity* dengan log *density* dapat dilihat adanya *crossover* antara kedua log tersebut yang dapat mengindikasikan adanya fluida reservoar. Berdasarkan informasi tersebut, dapat dikatakan zona target yang didapatkan untuk melihan persebaran litologi batupasir dan fluida reservoar yang berada pada formasi Missisauga terdapat pada *#sand2*, *#sand3*, *#sand4* dan *#sand5*.

Gambar 3. 7 Data log pada lapangan Penobscot sumur L-30, dengan zona target ditunjukkan oleh garis berwarna merah.
3.4.1.5. Analisa Tuning Thickness

Analisis *tuning thickness* dilakukan untuk melihat kemampuan gelombang seismik memisahkan dua *event* atau reflektor yang berdekatan. Gelombnag seismik hanya dapat membedakan batuan yang memiliki ketebalan diatas

seperempat panjang gelombang (1/4 λ). Hal yang dilakukan untuk menghitung panjang gelombang dapat menggunakan kecepatan gelombang P dan nilai frekuensi dominan pada zona target. Dapat dilihat pada gambar 3.8, nilai frekuensi dominan yang didapatkan sebesar 24.5 Hz dan nilai kecepatan interval yang didapatkan sebesar 4017.589 m/s.

Gambar 3. 8 Spektrum Amplitudo dengan nilai frekuensi dominan sebesar 24.5 Hz ditandai dengan garis lurus berwarna merah.

Untuk mendapatkan nilai panjang gelombang (λ) menggunakan persamaan gelombang dengan melakukan perhitungan antara nilai kecepatan dibagi nilai frekuensi dominan. Setelah didapatkan nilai panjang gelombang (λ) maka nilai ketebalan *tunning thickness* yang dihasilkan adalah 40.9958 meter. Ketebalan litologi pasir pada zona target berkisar 6.25-62.5 meter. Sehingga untuk mengetahui persebaran litologi batupasir dan fluida reservoar pada zona target diharapkan *wavelet* yang diperoleh dapat memperjelas target dengan ketebalan yang melebihi nilai *tuning thickness*.

3.4.1.6. Prediksi Log Vs

Kecepatan gelombang S memiliki informasi mengenai properti elastik batuan yang tidak dimiliki oleh kecepatan gelombang P. Oleh karena itu, kecepatan gelombang S sangat dibutuhkan pada proses inversi EEI, sedangkan pada lapangan Penobscot ini tidak memiliki log kecepatan gelombang S. Dengan tidak tersedianya log Vs pada lapangan Penobsot ini, akan dilakukan prediksi log Vs menggunakan pendekatan Greenberg-Castagna (1992).

$$Vs = 0.804Vp - 0.85588 \ km/s \tag{3.1}$$

Pendekatan Greenberg-Castagna (1992) dapat menjelaskan mengenai hubungan empiris untuk memprediksi log Vs menggunakan data Vp dengan kondisi batuan tersaturasi air (*brine-saturated*).

Gambar 3. 9 Log Vs menggunakan pendekatan Greenberg-Castagna

3.4.2. Well Seismic Tie

Proses *well seismic tie* merupakan pengikatan antara data log dengan data seismik, sehingga data seismik dalam domain waktu dapat berkorelasi dengan data log sumur yang memiliki domain kedalaman. *Well seismic tie* digunakan untuk menempatkan *event* reflektor seismik pada kedalaman yang sebenarnya dengan cara mencocokkan *event* refleksi dengan sintetik seismogram yang bersesuaian dengan suatu bidang batas serta melakukan korelasi pada interpretasi geologi yang didapatkan berdasarkan data seismik dan sumur. Pada proses ini menggunakan data log *sonic* dan log densitas yang telah dikoreksi kedalamannya dengan menggunakan data *checkshot*.

Pada proses ini sangat memerlukan *wavelet* seismik untuk membuat seismogram sintetik berdasarkan data log. *Wavelet* yang digunakan didapatkan melalui proses ekstraksi data seismik pada kedalaman dan lebar jendela tertentu pada daerah zona target. Lalu, diikuti dengan ekstrak *wavelet* dari data sumur agar menghasilkan korelasi optimum dengan data seismik.

Wavelet	Sumur L-30	Sumur B-41						
Statistical	0.774	0.688						
Bandpass	0.73	0.669						
Use Well	0.684	0.567						

Tabel 3. 4 Hasil Ekstraksi Wavelet

Selanjutnya, setelah mendapatkan hasil ekstraksi wavelet dengan korelasi terbaik, akan dilakukan proses konvolusi antara *wavelet* dengan log resistivitas yang akan menghasilkan sintetik seismogram. Setelah didapatkannya hasil dari proses *well seismic tie* yang nantinya akan digunakan sebagai *guide* dalam melakukan proses *picking horizon* dan *picking fault*.

Gambar 3. 10 Well seismic tie sumur L-30 dengan korelasi 0.774

Gambar 3. 11 Well seismic tie sumur B-41 dengan korelasi 0.688

3.4.3. Interpretasi Seismik

3.4.3.1. Picking Horizon dan Picking Fault

Picking horizon dan *picking fault* dilakukan setelah proses *well seismic tie*. Proses ini dilakukan untuk mengidentifikasi struktur bawah permukaan dan kemenerusan suatu lapisan pada zona target. Pada interpretasi *horizon*, kemenerusan lapisan ditandai dengan amplitudo refleksi pada data seismik, yang mana pada proses ini dilakukan pada zona target *#sand2*, *#sand3*, *#sand4* dan *#sand5*. Sedangkan interpretasi *fault* digunakan untuk mencari kemenerusan dan arah dari *fault* yang dapat berperan sebagai jalur migrasi hidrokarbon dari *source rock* ke *reservoir rock*.

Gambar 3. 13 Picking Fault pada xline 1165

3.4.3.2. Time Structure Map

Setelah selesai melakukan proses *picking horizon*, selanjutnya dilakukan pembuatan peta struktur waktu yang bertujuan untuk memperlihatkan keadaan struktur bawah permukaan, yang nantinya berguna untuk menunjukkan sebaran litologi dan fluida. Pembuatan peta struktur kedalaman dibuat dalam domain waktu berdasarkan hasil dari proses *picking horizon* dan *fault*.

Gambar 3. 14 Peta struktur waktu #sand2

Gambar 3. 15 Peta struktur waktu #sand3

Gambar 3. 16 Peta struktur waktu #sand4

Gambar 3. 17 Peta struktur waktu #sand5

3.4.4. Pembuatan Spektrum EEI

Spektrum EEI memiliki rentang sudut dari -90° hingga 90°, dapat dikatakan log EEI memiliki jangkauan sudu yang sangat luas. Pembuatan spektrum EEI dilakukan untuk mencari tahu kemiripan antara log target dengan respon log EEI pada rentang sudut tersebut. Pembuatan spektrum EEI dilakukan dengan menggunakan *increment* sudut 10° yang ditunjukkan pada gambar 3.18 dibawah ini.

Gambar 3. 18 Spektrum EEI rentang χ -90° hingga +90°

Setelah dilakukannya pembuatan spektrum EEI, untuk mengetahui sudut optimum antara log target dan log EEI perlu dilakukannya *cross correlation* antara log target. *Cross correlation* sendiri dilakukan untuk membandingkan kecocokan antara dua fungsi yang berbeda, dimana semakin mendekati angka satu untuk hasil korelasi yang didapatkan, maka semakin mirip juga kedua log tersebut.

3.4.5. Pembuatan Penampang Reflektivitas EEI

3.4.5.1. Analisa AVO Intercept (A) dan Gradient (B)

AVO atribut berupa *intercept* (A) dan *gradient* (B) diperlukan untuk membuat penampang reflektivitas EEI. *Intercept* merupakan atribut reflektivitas pada sudut datang normal yang disebut nilai koefisien refleksi ketika *offset* yang dibuat merupakan *offset* fasa nol. Sedangkan *gradient* merupakan atribut AVO yang menggambarkan besar *trend* perubahan amplitudo yang terjadi pada suatu data seismik.

Gambar 3. 19 Penampang intercept AVO

Gambar 3. 20 Penampang gradient AVO

3.4.5.2. Reflektivitas EEI

Setelah didapatkan nilai *intercept* dan *gradient*, maka dapat dilakukan pembuatan penampang reflektivitas EEI. Penampang reflektivitas EEI dibuat berdasarkan sudut hasil korelasi tertinggi antara log target dengan log EEI. Penampang reflektivitas EEI sudut 23° yang merupakan sudut optimum log EEI *gamma ray* dan penampang reflektivitas EEI sudut 18° yang merupakan sudut optimum log EEI *lambda-rho* yang nantinya akan digunakan sebagai input untuk inversi EEI.

Gambar 3. 21 Reflektivitas EEI Gamma Ray sudut 23°

Gambar 3. 22 Reflektivitas EEI sudut Lambda Rho 18°

Gambar 3. 23 Reflektivitas EEI Mu Rho sudut -57°

3.4.6. Estimasi Wavelet

Estimasi *wavelet* yang dilakukan yaitu pada penampang seismik reflektivitas *gamma ray, mu rho*, dan *lambda rho*. Ekstraksi *wavelet* yang diekstrak berada pada zona target disekitar sumur L-30 yang berada pada *time* 1975-2185 ms sehingga dapat mewakili reflektivitas pada zona target.

Gambar 3. 24 Wavelet (kiri) dan fasa (kanan) dari penampang reflektivitas EEI Gamma Ray

Gambar 3. 25 Well to Seismic Tie penampang reflektivitas EEI Gamma Ray

Gambar 3. 26 Wavelet (kiri) dan fasa (kanan) dari penampang reflektivitas Lambda Rho

Gambar 3. 27 Well to Seismic Tie penampang reflektivitas EEI Lambda Rho

Gambar 3. 28 Wavelet (kiri) dan fasa (kanan) dari penampang reflektivitas Mu Rho

Gambar 3. 29 Gambar 3. 26 Well to Seismic Tie penampang reflektivitas EEI Mu Rho

Wavelet yang digunakan pada proses well to seismic tie ini adalah wavelet statistical dengan frekuensi dominan 24 Hz. Hasil dari proses ini nantinya akan digunakan dalam menentukan inversi EEI gamma ray, lambda rho, dan mu rho. Berdasarkan proses well to seismic tie tersebut didapatkan nilai hasil korelasi maksimum yang mana semakin tinggi nilai korelasi dari wavelet yang digunakan, maka nantinya wavelet tersebut dapat digunakan dengan baik untuk penyebaran impedansi log pada proses inversi EEI agar menghasilkan penampang inversi yang semakin baik.

3.4.7. Pembuatan Model Awal EEI

Setelah didapatkannya nilai optimum korelasi antara log targei dengan log EEI kemudian dilakukan pembuatan model awal dengan menggunakan penampang reflektivitas dan data log serta interpretasi horizon yang telah dilakukan sebelumnya pada saat melakukan *picking horizon*.

Gambar 3. 30 Model EEI Gamma Ray (Frekuensi 10-15 Hz)

Gambar 3. 31 Gambar 3. 29 Model EEI Lambda Rho (Frekuensi 10-15 Hz)

Gambar 3. 32 Gambar 3. 29 Model EEI Mu Rho (Frekuensi 10-15 Hz)

Penampang model awal tersebut diatas nantinya akan digunakan dalam proses inversi EEI, jika warna antara model EEI dan *pseudo* log target memiliki kesamaan atau perbedaan warna yang tidak cukup jauh maka hasil inversi yang dihasilkan akan semakin baik.

3.4.8. Analisis Inversi

Analisis inversi dilakukan dengan tujuan untuk mengontrol kualitas hasil inversi dengan menggunakan beberapa parameter tertentu yang dianalisis agar menghasilkan nilai impedansi hasil inversi memiliki kemiripan dengan nilai impedansi dari data log. Parameter analisis inversi yang perlu diperhatikan diantaranya *time window* inversi dengan acuan log target pada horizon Sand 2 (-20 ms) untuk batas atas dan horizon Sand 5 (+20 ms) sebagai batas bawahnya. Konstrain pada penelitian ini menggunakan *soft constrain* dengan nilai 0.8 dari *initial model*. Konstrain sendiri merupakan parameter yang menggunakan model awal sebagai acuan analisisnya. Semakin besar nilai konstrain yang digunakan, maka dominasi *initial model* akan lebih besar, sehingga dilakukan iterasi sebanyak 50 kali untuk mendapatkan nilai error yang minimum. Analisis inversi dilakukan pada setiap model awal yang akan digunakan yaitu pada model *gamma ray, lambda rho* dan *mu rho*.

Gambar 3. 34 Analisis Inversi Lambda Rho

Gambar 3. 35 Analisis Inversi Mu Rho

Berdasarkan gambar diatas, hasil analisis inversi EEI *gamma ray* (gambar 3.32) dengan nilai *error* 94.79 ((m/s)*(g/cc)) atau sebesar 17.84% dengan korelasi terbaik 0.830925. Hasil tersebut diakibatkan oleh model EEI yang dibuat tidak terlalu mendekati log EEI pada sumur sehingga akan berpengaruh pada hasil

inversi nantinya terutama pada bagian horizon Sand 3. Hal tersebut dibuktikan dengan hasil *crossplot error* (gambar 3.35) antara impedansi pada *original log* dengan impedansi pada hasil inversi EEI *gamma ray* yang masih menyebar dari *trendline* garis lurus berwana merah.

Pada gambar 3.33 memperlihatkan hasil analisis inversi EEI *lambda rho* dengan nilai *error* 313.84 ((m/s)*(g/cc)) atau sebesar 23.53 % dengan korelasi terbaik 0.970531. Hasil tersebut masih kurang baik karena model EEI yang dibuat masih belum mendekati log EEI pada sumur terutama pada bagian horizon Sand 3 yang akan berpengaruh pada hasil inversi nantinya. Hal tersebut juga dapat dibuktikan dengan hasil *crossplot error* (gambar 3.36) antara impedansi pada *original log* dengan impedansi pada hasil inversi EEI *lambda rho* yang masih menyebar dari *trendline* garis lurus berwana merah.

Pada gambar 3.34 memperlihatkan hasil analisis inversi EEI *mu rho* dengan nilai *error* 2382.63 ((m/s)*(g/cc)) atau sebesar 12.96 % dengan korelasi terbaik 0.89002. Hasil tersebut sudah cukup baik karena model EEI yang dibuat sudah mendekati log EEI pada sumur. Hal tersebut juga dapat dibuktikan dengan hasil *crossplot error* (gambar 3.36) antara impedansi pada *original log* dengan impedansi pada hasil inversi EEI *mu rho* yang sudah mengikuti *trendline* garis lurus berwana merah.

Gambar 3. 36 Crossplot error model inversi EEI Gamma Ray dengan original log

Gambar 3. 37 Crossplot error model inversi EEI Lambda Rho dengan original log

Gambar 3. 38 Crossplot error model inversi EEI Mu Rho dengan original log