BAB III METODE PENELITIAN

3.1 Data dan Daerah Penelitian

Penelitian ini menggunakan data primer dengan proses pengambilan data dilakukan pada tanggal 7 - 9 Juli 2019 di wilayah Kecamatan Tanjung Karang Timur, Kota Bandar Lampung, Provinsi Lampung. Pengambilan data mikrotremor dilakukan di 17 titik lokasi pengukuran. Lokasi pengambilan data mikrotremor ditunjukkan pada Gambar 3.1.

Gambar 3.1 Desain lokasi pengambilan data mikrotremor

3.2 Peralatan

Peralatan yang digunakan dalam penelitian ini berupa perangkat keras dan perangkat lunak.

1. Perangkat Keras

Perangkat keras yang digunakan dalam penelitian ini sebagai berikut:

- a. Laptop dengan spesifikasi *DELL Inspiron* 15 5000 series dengan processor Intel[®] Core[™] i5 7th Gen dan memori 8 GB RAM.
- b. Seperangkat Digital Portable Seismograph, dengan rincian:

- Seismometer tipe C100, *short-period sensors* dengan tiga komponen yang mencakup frekuensi 1 Hz untuk mengukur getaran tanah pada setiap titik lokasi pengukuran.
- 2. *Digitizer* SRI32L/S untuk merekam sinyal getaran tanah yang diperoleh dari seismometer.
- 3. Antena GPS yang terhubung dengan *Digital Portable Seismograph* untuk menerima data lokasi dan waktu dari satelit.
- 4. *MicroSD card* dan *adapter* untuk menyimpan rekaman data mikrotremor.
- 5. Kabel penghubung untuk menghubungkan seismometer dan antena GPS ke *digitizer*.
- 6. Kabel *power* untuk menghubungkan *digitizer* ke aki.
- 7. *Global Positioning System* (GPS) untuk mengetahui koordinat titik pengukuran.
- c. Kompas untuk menentukan arah seismometer pada saat memasang alat seismometer.
- d. Linggis untuk membuat lubang tempat seismometer.

Gambar 3.2 (a) Digitizer SRI32L/S, (b) Kabel penghubung, (c) Seismometer tipe C100

2. Perangkat Lunak

Perangkat lunak yang digunakan dalam penelitian ini sebagai berikut:

a. Windows 10 Pro 64-bit sebagai sistem operasi.

- b. *Geopsy* versi 2.10.1 dari *geopsy.org* untuk memilih sinyal dan menghilangkan *noise* dari data mikrotremor.
- c. *dinver* merupakan fungsi dari *geopsy.org* untuk melakukan inversi kurva HVSR.
- d. Command Prompt (CMD) untuk membuka perangkat lunak dinver.
- e. Notepad untuk menampilkan nilai kecepatan gelombang geser (V_s) .
- f. Microsoft Word 2016 untuk penyusunan Tugas Akhir.
- g. Microsoft Powerpoint 2016 untuk menggambar ulang dari referensi awal.
- h. *Microsoft Excel* 2016 untuk melakukan perhitungan data.
- i. Google Earth Pro untuk membuat desain lokasi titik pengukuran.
- j. ArcGIS versi 10.3 untuk pemetaan.
- k. OriginPro versi 9 64-bit untuk membuat grafik.

3.3 Pengambilan dan Pengolahan Data Mikrotremor

3.3.1 Pengambilan Data Mikrotremor

Pengambilan data mikrotremor dilakukan dengan pengukuran sinyal mikrotremor di 17 titik lokasi pengukuran selama 30 - 40 menit dengan frekuensi sampling sebesar 100 Hz. Dalam melakukan pengukuran data mikrotremor terdapat beberapa syarat yang ditunjukkan pada Tabel 3.1.

Jenis Parameter	Saran ya	ang dianjurkan
	fo minimum yang	Durasi pencatatan minimum
	diharapkan (Hz)	yang disarankan (menit)
	0,2	30
Durasi nencatatan	0,5	20
Durasi peneatatan	1	10
	2	5
	5	3
	10	2

Tabel 3.1 Syarat pengukuran mikrotremor [28]

Saran yang dianjurkan
1. Atur sensor langsung pada permukaan tanah
2. Hindari menempatkan sensor seismograf pada
permukaan tanah lunak (lumpur dan semak-semak),
atau tanah lunak setelah hujan
1. Hindari lempengan yang terbuat dari material lunak
seperti karet atau busa
2. Pada kemiringan yang curam sehingga sulit
mendapatkan kedataran sensor yang baik, pasang
sensor dalam timbunan pasir atau wadah yang diisi
pasir
1. Hindari pengukuran dekat dengan bangunan,
gedung bertingkat dan pohon yang tinggi, jika tiupan
angin di atas \pm 5 m/s. Kondisi ini sangat
mempengaruhi hasil analisis HVSR
2. Hindari pengukuran di lokasi tempat parkiran, pipa
air, dan gorong-gorong
1. Angin: lindungi sensor dari angin (lebih cepat \pm 5
m/s)
2. Hujan: hindari pengukuran pada saat hujan lebat.
Hujan ringan tidak memberikan gangguan berarti
3. Suhu: mengecek kondisi sensor dan mengikuti
instruksi pabrik
1. Sumber monokromatik: hindari pengukuran
mikrotremor dekat dengan mesin, industri, pompa
air, dan generator yang sedang beroperasi
2. Sumber sementara: jika terdapat sumber getar
transient (jejak langkah kaki, mobil/motor lewat)
tingkatkan durasi pengukuran untuk memberikan
jendela yang cukup untuk analisis setelah gangguan
tersebut hilang

Tahap pengambilan data mikrotremor pada penelitian ini diantaranya sebagai berikut:

- 1. Memasang microSD card dan adapter ke digitizer.
- Membuat lubang dengan linggis untuk menanamkan alat seismometer ke dalam tanah.
- 3. Menanamkan alat seismometer dengan tegak dan mengarah pada utara kompas.
- 4. Menghubungkan alat seismometer dan antena GPS ke *digitizer* menggunakan kabel penghubung.
- 5. Menghubungkan *digitizer* ke aki menggunakan kabel power.
- Data yang didapatkan terdiri dari tiga komponen, yaitu komponen horizontal N-S (Utara-Selatan), komponen horizontal E-W (Timur-Barat), dan komponen vertikal Z.
- 7. Setelah data tersimpan secara otomatis di *microSD card*, dilanjutkan memindahkan data ke Laptop dan disimpan dalam format *file* .MSEED.

3.3.2 Pengolahan Data Mikrotremor

Pengolahan data mikrotremor dilakukan dengan beberapa tahap, diantaranya sebagai berikut:

 A. Pengolahan data mikrotremor dengan metode analisis *Horizontal to Vertical* Spectral Ratio (HVSR)

Proses pengolahan data mikrotremor dengan metode analisis *Horizontal to Vertical* Spectral Ratio (HVSR) menggunakan perangkat lunak Geopsy versi 2.10.1 untuk mendapatkan kurva HVSR sehingga menghasilkan nilai frekuensi dominan (f_0) dan faktor amplifikasi tanah (A). Kurva HVSR memiliki tiga kriteria reliabilitas (dipercaya) yang mengacu pada standar yang dibuat oleh SESAME European Research Project, sebagai berikut [28]:

- (i) Nilai frekuensi dominan (f0) harus lebih besar dari $10/I_w$. Dengan I_w adalah panjang *windows* yaitu 30 sekon.
- (ii) Nilai *number of cycles* (n_c) harus lebih besar dari 200. Nilai $n_c = I_w.n_w.f_0$, dengan n_w adalah jumlah *windows*.

(iii) a. Jika nilai *f*0 lebih dari 0,5 Hz, nilai standar deviasi (*σA*) harus kurang dari 2 untuk nilai *f*₀ antara 0,5*f*₀ < *f* < 2*f*₀.
b. Jika nilai *f*0 kurang dari 0,5 Hz, nilai standar deviasi (*σA*) harus kurang dari 3 untuk nilai *f*₀ antara 0,5*f*₀ < *f* < 2*f*₀.

Tahap pengolahan data menggunakan perangkat lunak *Geopsy* versi 2.10.1, diantaranya sebagai berikut:

1. Membuka *icon* perangkat lunak *Geopsy* versi 2.10.1. Kemudian klik pilihan OK pada jendela *Preferences*.

Gambar 3.3 Tampilan awal pada perangkat lunak Geopsy versi 2.10.1

 Memilih menu *File > Import Signal* kemudian akan muncul tampilan jendela *Load Signal*. Selanjutnya memilih *file* rekaman mikrotremor dalam bentuk MSEED dengan tiga komponen lalu klik *Open*.

			77227
📑 Geopsy -			- 0 ×
File Edit View Waveform Tools	Windows Help		
🥖 🗟 🖗 - 🔲 🔂 🗎	3 🔝 🔛 🕻		
Fles	8 ×		
All signals	A list of		
Temporary signals	A list of		
All files	A list of		
Temporary files	A list of	Load Signals f X	
Permanent files	A list of	Look in: D:\[1] PENGOLAHAN DATA'DATA GABUNG - O O O	
<	>		
Groups Files		My Computer 023_Y1N_190707_021000.AE.mseed.miniseed 023_Y6N_190707_083000.AE.mseed.minis	
	- ×	223_YIN_190707_021000_AN.mseed.miniseed 023_Y6N_190707_083000_AN.mseed.mini	
.0g		023_V1N_190707_021000.AZ.mseed.minised	
		CS_T2V_T9007_033000.AE:mseed.miniseed22_YVRU_190708_032232.AE:mseed.minis	
		C2_T214_19/07/03500 ARK.INSEED.INIIIISEED 22_T314_19/07/052252-ARK.INSEED.INIIII	
		C2_121v_19707_05300A2_m5eed_ministeed225_10v_19706_05225_A2_m5eed_minis	
		025_1517_150/07_051000-Ac.mseed.ministeed 025_15170702_020000-Ac.mseed.minis	
		023 X/M 190707 115000 AF mean minicad 023 X/3N 190708 09500 AF mean mini	
		23 X/M 19/07/11500 AM mead minicard 23 X13N 19/07/8 08500 AM mead min	
		0.23 X/M 19/07/11500 AZ mead minicad 0.23 X13N 19/07/8 08500 AZ mead min	
		023 VIN 190708 06100 AE mised minimad 023 VIN 190709 01500 AE mised mini	
		023 Y/M 190708 06100 AM model minicard 023 Y/M 190709 01500 AM mead min	
		023 Y/M 190708 061000 AZ mead minister 023 Y/M 190709 015000 AZ mead min	
		023_134_15008_001000.x2.itSeeu.htmiseeu = 023_1444_15005_01300.x2.itSeeu.htm	
		File name: "023_Y1N_190707_021000.AN.mseed.miniseed" "023_Y1N_190707_021000.AZ.mseed.miniseed" Open	
		Files of type: Signal file (*) Cancel	
Messages /			
Waveform console Log			
		0 signals, 0 files, free	cache 512 Mb

Gambar 3.4 Tampilan membuka file rekaman mikrotremor

3. Memblok tiga komponen data mikrotremor di jendela *File* sebelah kiri untuk menampilkan rekaman mikrotremor, kemudian klik kanan pilih *Graphic*. Tampilan rekaman mikrotremor ditunjukkan pada Gambar 3.6.

Gambar 3.5 Tampilan membuka *file* rekaman mikrotremor pada grafik

Gambar 3.6 Tampilan dari tiga komponen rekaman mikrotremor

Memilih *icon* H/V pada menu *Tools* untuk melakukan *windowing* sinyal.
 Pemilahan *window* dilakukan secara otomatis.

Pemilahan *window* ini dilakukan untuk memisahkan antara sinyal tremor dengan sinyal transient (sumbernya seperti angin, hujan, langkah kaki, kendaraan lewat, dan lain-lain yang dianggap sebagai *noise*).

Cara untuk mendeteksi sinyal transient dengan membandingkan nilai STA (*short term average*) dan LTA (*long term average*) yang ada di H/V *Toolbox* parameter bagian *Time* kemudian *Raw signal*.

STA merupakan rata-rata amplitudo jangka pendek (0,5 - 2,00 sekon), nilai standarnya adalah 1 sekon. Sedangkan LTA merupakan rata-rata amplitudo jangka panjang (>10 sekon), nilai standarnya adalah 30 sekon. Pada saat STA/LTA melebihi ambang batas yang sudah ditentukan, maka dapat dikatakan sebagai *event*. Setelah *event* transient terdeteksi maka data selain transient dibagi menjadi beberapa *window* [15]. Min STA/LTA adalah batas bawah untuk rasio STA/LTA nilai standarnya adalah 0,20, sedangkan Max STA/LTA adalah batas bawah untuk rasio STA/LTA nilai standarnya adalah 2,5.

5. Kemudian akan muncul jendela H/V toolbox yang terdiri dari Time, Processing, dan Output. Pada menu *Time* terdapat *Time windows* yang terdiri dari submenu *General*, kemudian mengubah *Length windows* yaitu sebesar 30,00 sekon. Pada submenu *Raw signal*, mengubah nilai STA sebesar 1,00 sekon, nilai LTA sebesar 30,00 sekon, nilai Min STA/LTA sebesar 0,20, dan nilai Max STA/LTA sebesar 2,5. Pada menu *Processing* memilih jenis *smoothing* yang digunakan yaitu Konno & Ohmachi dengan konstanta 10,00 - 40,00. *Output Frequency Sampling* yang digunakan sebesar 0,50 Hz sampai 15,00 Hz dan *number sampling* sebesar 100.

	Processing Output				
Globa	l time range				
From	то	•	2h10m		
To	End	•	3h5m28.0600s		
Οu	se only the properties of the first signal				
Time	vindows				
inde i	MIRGONS				
Ge	neral Raw signal Filter Filtered signal		1		
Len	gth Exactly 👻		30,00 s.		
-			Overlap by	5,00 %	-
	Bad sample tolerance		0.00 s.		\$
	Bad sample threshold			00.96	
				22.10	
	Anti-triggering on raw signal				
	Anti-triggering on filtered signal				
	ommon 🗸 Lindate			Select	• •
ш °				occer	

Gambar 3.7 Tampilan sub menu General pada menu Time

IIC.	Process	ng Output					
Global	time rang	le					
rom	то			•	2h10m		
Го	End			•	3h5m28.0600s		
Us	e only the	e properties of t	he first signa	al l			
Ger STA	neral 🔾	1,00 s.	Filter Filt	Apply to			
LTA		30,00 s.	\$	Vertical			
Min	STA/LTA	0,20		East			
Max	STA/LTA	2,50	•	✓ Y1_023			
	Anti-trigg	ering on raw sig	nal				
_ Co	ommon [Update				Sele	ct* ▼
wa	I stations				÷	Number of windows	Π

Gambar 3.8 Tampilan sub menu Raw signal pada menu Time

Emonthing type	Konno & Ohmachi	-
Emoothing constant	10.00	*
	40,00	*
✓ Use cosine taper	Wath 5,000 %	*
High-pass filter	1,00 Hz	÷
	3.W	

Gambar 3.9 Tampilan menu Processing

From	b.50 Hz	‡ to	15.00 Hz	4
Step Log 🔻 Numb	er of samples 100		Lasteration	\$
Appearance			~	
Page height	29,7 cm	Plots per line	2	\$
Results make-up				
Summary make-up				
Output				
Directory				
ere ser e				i i i i i i i i i i i i i i i i i i i

Gambar 3.10 Tampilan menu Output

6. Selanjutnya kembali pada menu *Time* memilih *Select > Add*, untuk memilih sinyal tanpa sinyal transient. Kemudian klik *Start*. Pilih *Yes* pada jendela *Calculating* H/V. Dalam pemilahan *window* secara otomatis, dapat dilakukan secara manual jika terdapat sinyal transient yang masih tertangkap *window* dengan memilih *Remove* pada *Select*.

lobal time range		
rom T0	•	IOm
5 End	-	im28.0600s
Use only the properties of the first signal		
me windows		
General Raw signal Filter Filtered signal		
Length Exactly 🔻		30,00 s.
		Overlap by 5.00 %
Bad sample tolerance		0,00 s.
Bad sample threshold		
Anti-triggering on raw signal		Add
Anti-triggering on filtered signal		Inve
		Cle
Common 🔽 Update		Select*
y all stations		▼ Number of windows

Gambar 3.11 Tampilan menu *Time* untuk memulai pemilahan *window*

7. Maka akan tampil kurva HVSR hubungan antara frekuensi dominan terhadap nilai puncak HVSR (amplifikasi) terlihat pada Gambar 3.13.

Gambar 3.12 Tampilan pemilahan window

Gambar 3.13 Tampilan kurva H/V

- 8. Untuk menyimpan kurva H/V dalam bentuk *text* dengan format .hv, pada jendela H/V *Result* memilih menu *Tools* > *Save result*.
- B. Pengolahan inversi kurva HVSR dengan metode ellipticity curve

Hasil analisis kurva HVSR digunakan untuk *input* data inversi kurva HVSR dengan metode *ellipticity curve* menggunakan perangkat lunak *dinver* fungsi dari *geopsy.org*. Metode *ellipticity curve* menghasilkan nilai kecepatan gelombang geser (V_s). Nilai kecepatan gelombang geser (V_s) sangat dipengaruhi oleh nilai *input* parameter model awal yang menggambarkan struktur bawah permukaan atau geologi daerah penelitian yaitu nilai v_p , v_s , h, σ dan ρ . Parameter tersebut di *input* merupakan nilai estimasi.

Tahap pengolahan inversi kurva HVSR dengan perangkat lunak *dinver*, diantaranya sebagai berikut:

1. Membuka *icon* CMD (*Command Prompt*) untuk membuka perangkat lunak dinver sebagai fungsi dari *geopsy.org* kemudian ketik *dinver* lalu *Enter*.

Gambar 3.14 Tampilan App CMD (Command Prompt)

2. Klik OK pada jendela Dinver plugin selector.

Gambar 3.15 Tampilan awal perangkat lunak dinver

3. Memilih menu *Targets* di bagian tengah pada perangkat lunak dinver, kemudian mencentang *Ellipticity curve* > *Set*. Selanjutnya memilih *Parameters* di bagian bawah untuk mengubah nilai v_p , v_s , σ , dan ρ .

		×	OR Ellipticity target									
Misfit	veight Min. misfit		Load Clear Le	gend Average		-						
Dispersion	1	0 Set	Curve data			-						
Auto-correlation	1	0 Set	No curve defined									
Ellipticity curve	1	0 Set	Slowperr Polar	ination Mode index	Add							
Elipticity peak	1	0 Set	Stowness Fold	Social modelmock	Remove							
Refraction Vo	+1	0 Set				-						
Refraction Vs	1	0 Set				S H						
No target curve defined						È 1−						
			_									
			< Name Curve #1	<u> </u>	> Visible Actions *		0.2 0.4 0.6 0.8 1	2 Freque	4 6 8 10	' 20 '	' <mark>'4</mark> 6'	' ' 60
											in the second se	
Runs Targets Log			¢									
Runs Targets Log arameters			¢									
Runs Targets Log arameters			< Id		Add	_		Add				
Runs Targets Log arameters Add Compress	ion-wave velocity (m	's)	k Id Pi	oisson's Ratio	Add Del	Shea	r-wave velocity (m/s)	Add	De	nsity (kg/m3)	
Runs Targets Log arameters Add Compress Del O Uniform V	ion-wave velocity (m,	s) 🚯 🗚	id Pr el form V	oisson's Ratio	Add Del	Shea •	r-wave velocity (m/s)	Add	De m •	nsity (kg/m3)	
Runs Targets Log rameters Add Compress Del Uniform	ion-wave velocity (m, Linked to Vs0	s) 🚯 🗚	c Id Pr Iform V	Disson's Ratio	Add Del Uniform	Shear	r-wave velocity (m/s) Linked to Not linked Bottom depth	Add Del Unifo	De m •	nsity (kg/m3 Linka) :d to Vs0	

Gambar 3.16 Tampilan Parameters

4. Mengubah nilai parameter *Compression-wave velocity* (v_p), *Poisson's Ratio* (σ), *Shear-wave velocity* (v_s), dan *Density* (ρ) dengan nilai estimasi. Untuk menyimpan parameter klik menu *File* > *Export parameterization*.

		F	×											
Ope	v m	n. misfit	^ Load C	Ilear Legend A	verage									
Save Save	e e as	0 Set	Curve data	a K			>	-						
Imp	iort targets	0 Set	Slowne	ess Polarisation N	lode index		Add	-						
Exp	ort targets ort parameterization	n Sei				R	emove							
Exp	ort parameterization		<											,
Qui	t Ctrl+Q Compression-wave velo	city (m/s)	Add	Poisson's F	atio		Add	Shear-wa	ve velocity (m/s)		Add	Density (kg	/m3)	4
Del		•	Del		•		Del			•	Del			
) Unifi Vp0:	orm • 332 to 6300 m/s Fixed	vs0 vs0) Uniform	▼ Linked	to Vs0 👻		Uniform /s0: 80 to	▼ 3200 m/s □ Fixed	Linked to Not linked Bottom depth DVs0: 1 to 100 m F	▼ ▼ ixed	O Uniform	• 0 to 3300 kg/m3 Fixed	Linked to Vs0	
) Unifi	orm	ed to Vs1 🔹) Uniform	▼	Linked to Vs1 🔻	0	Uniform	▼ ✓ Vs0 <	Vs1 Linked to Not linked Bottom depth	• •	Uniform	 Rho0 < Rho1 to 3300 kg/m3 Fixed 	Linked to Vs1	
) Unifi	orm Vp1 < Vp2	ed to Vs2 🔻) Uniform	▼	Linked to Vs2 🔻		Uniform	▼	Vs2 Linked to Not linked Bottom depth	• •	Uniform	 Rho1 < Rho2 n to 3300 kg/m3 Fixed 	Linked to Vs2	
) Unifi	orm Vp2 < Vp3	ed to Vs3 👻) Uniform	▼ ✓ Nu2 > Nu3	Linked to Vs3 🔻		/s2: 80 to	3200 m/s Fixed ▼ 2 Vs2 <	DVs2: 1 to 100 m Vs3 Linked to Not linked Bottom depth	Fixed	O Uniform	▼ Rho2 < Rho3	Linked to Vs3	
vps: Unifi	orm	☑ Vp3 < Vp4	Uniform	•	✓ Nu3 > Nu4	•	/s3: 80 to Uniform	3200 m/s 🗌 Fixed	DVs3: 1 to 100 m	Fixed 3 < Vs4	Uniform	• •	Rho3 -	< Rh
Vp4:	332 to 6300 m/s Fixed		Nu4: 0,2 to 0,5			3	/s4: 80 to	3200 m/s Fixed			Rho4: 120	0 to 3300 kg/m3 Fixed		

Gambar 3.17 Mengubah nilai parameters

5. Selanjutnya memilih menu *Runs* di bagian tengah perangkat lunak dinver. Klik menu *Runs* di bagian atas > *Add*. Mengubah iterasi (*Itmax*) nya sebanyak 100 kali kemudian klik *Load* pada jendela *Ellipticity target* untuk meng-*input* data kurva H/V dalam format .hv yang telah diolah oleh perangkat lunak *Geopsy* versi 2.10.1. Simpan *file* terlebih dahulu, lalu klik *Start* pada menu *Runs* di bagian atas. *Runs* dapat dilakukan berkali-kali dalam pengolahan data ini dilakukan sebanyak 2 dengan iterasi yang sama.

Gambar 3.18 Tampilan Add Runs

Gambar 3.19 Tampilan Runs iterasi 100

6. Untuk mengetahui nilai misfit (ketidaksesuaian) dapat dilihat pada jendela Status di bagian bawah tampilan perangkat lunak dinver. Kemudian untuk melihat hasil pemodelan inversi kurva HVSR yaitu berupa hasil analisis kurva Ellipticity Curve, cek nilai misfit klik menu View > Ellipticity. Klik Yes pada jendela View ellipticity curve masukkan angka Maximum misfit. Klik OK pada jendela Ellipticity viewer. Lakukan Runs > Start dan pengecekkan beberapa kali untuk mendapatkan nilai misfit terendah.

Gambar 3.20 Cek nilai misfit (ketidaksesuaian) terendah

ns							×	File	Edit Inse	ert Fo	ormat	Tools											
Run na	me Itmax	Ns	0 Ns	Nr	Seed	GiveUp	Nw	Em	damantal ma	de													
Y1N	100	50	50	50	6869	90	2	1.017			1	niiit-											
	100				4004		-			WN #	Ē	III F											
								Ellipticity (H															
									0.60.8 1	Frei	2 ' ' ' 4 quency (†	6 8 1 12)											
									0.60.81	Frei	2 ' ' 4 quency (r	6 8 1 Hz)	[0				Misfit value						
uns T	irgets L	.og						-	0.60.81	Fre	guency (f	6 8 1 Hz)	Г 				Misfit value						
tuns Tr	irgets L	og							0.60.81	Free	2 4 quency (F	- 6 8 1 +z)	5				Misfit value						
tuns T.	rgets L	og						-	0.60.81	Free	2 ' ' ' 4 quency (f	- 6 8 1 iz)	Б В	Pen	Run name	Min misfit	Misfit value Valid models	Active models	Visited models	Rate	Eff. Nr	Rejected	Give u
uns Ti tus 2-1	rgets L	.og							0.60.81	Fre	2 ' ' ' 4 quency (t	- 6 8 1 12)	5 36 '	Pen 1	Run name - Y1N	Min misfit 1.04594	Misfit value Valid models 267700/0	Active models 267700	Visited models 267700	Rate 4.5	Eff. Nr 50 m	Rejected 0 m/m	Give u 0 m
uns T. tus 2	rgets L	og				100000.	Generate	d models	0.60.81	Free	2 · · · · 4 quency (r 200600	- 6 8 1 12)		 Pen 1	Run name Y1N Y1N_02	Min misfit 1.04594 1.06774	Valid models 267700/0 126250/0	Active models 267700 126250	Visited models 267700 126250	Rate 4.5 2.1	Eff. Nr 50 m 50 m	Rejected 0 m/m 0 m/m	Give u 0 m 0 m

Gambar 3.21 Hasil analisis kurva Ellipticity Curve dengan nilai misfit terendah

7. Kemudian untuk mengetahui hasil kurva *Ground profiles*, memilih menu View > Ground profiles. Cek nilai *misfit* klik menu View > Ground *profiles*. Klik Yes pada jendela View ground profiles. Hasil analisis dari ground profiles adalah nilai kecepatan gelombang geser (V_s) dengan kedalaman (*depth*) tiap lapisan.

Gambar 3.22 Hasil analisis kurva Ground profiles dengan nilai misfit terendah

8. Untuk menampilkan nilai kecepatan gelombang geser (*V_s*) dengan kedalaman (*depth*) pada masing-masing *layer* (lapisan) dilakukan dengan *coding* di *App* CMD (*Command Prompt*).

Gambar 3.23 Coding di App CMD (Command Prompt)

 Data nilai kecepatan gelombang geser (V_s) dan kedalaman (depth) akan masuk ke dalam folder penyimpanan pengolahan data inversi kurva HVSR. Data tersebut dapat dibuka melalui App Notepad.

C. Perhitungan nilai kecepatan gelombang geser pada kedalaman 30 meter (Vs30) Perhitungan nilai kecepatan gelombang geser pada kedalaman 30 meter (Vs30) dilakukan menggunakan data V_s hasil dari inversi kurva HVSR. Setelah nilai V_s perlapisan didapatkan, maka dilakukan perhitungan menggunakan Persamaan (2.8) untuk mendapatkan nilai Vs30 setiap titik pengukuran.

D. Perhitungan nilai ketebalan lapisan sedimen (H)

Perhitungan nilai ketebalan lapisan sedimen (H) menggunakan Persamaan (2.9).

E. Perhitungan nilai ketinggian bedrock

Perhitungan nilai ketinggian *bedrock* menggunakan Persamaan (2.10). Nilai *Altitude* yang digunakan merupakan ketinggian tempat pengukuran setiap titik yang dicatat pada saat pengukuran tiap titik.

F. Pemetaan menggunakan perangkat lunak ArcGIS versi 10.3

3.5 Interpretasi Data

Hasil pengolahan data diinterpretasikan dalam bentuk peta ketinggian *bedrock* dan peta daerah rawan rekahan tanah berdasarkan morfologi *bedrock*.

3.4 Diagram Alir

Diagram alir yang digunakan dalam penelitian ini ditunjukkan pada Gambar 3.24. Berdasarkan gambar tersebut penelitian dimulai dengan mencari studi literatur, kemudian survei lapangan, membuat desain survei, mengambil/mengukur data mikrotremor, menganalisis kurva HVSR, melakukan inversi kurva HVSR, menghitung nilai *Vs30*, *H*, dan ketinggian *bedrock*, memetakan sebaran nilai ketinggian *bedrock*, memetakan daerah yang rawan rekahan tanah, membuat kesimpulan, dan selesai.

Gambar 3.24 Diagram alir penelitian